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Abstract. We study the properties of quantities aimed at the characterization of grid-like ordering in
complex networks. These quantities are based on the global and local behavior of cycles of order four,
which are the minimal structures able to identify rectangular clustering. The analysis of data from real
networks reveals the ubiquitous presence of a statistically high level of grid-like ordering that is non-trivially
correlated with the local degree properties. These observations provide new insights on the hierarchical
structure of complex networks.

PACS. 89.75.-k Complex systems – 89.75.Fb Structures and organization in complex systems

Empirical evidence shows that the topology of most net-
works arising in the biological, social, and technological
contexts exhibits complex features which cannot be ex-
plained by merely extrapolating the local properties of
their constituents [1,2]. The most relevant among these
features is the small-world property [3] and a high level
of heterogeneity, usually reflected in a scale-free behav-
ior of the network’s connectivity [4]. While these prop-
erties would point to a very large degree of randomness,
real networks exhibit a surprising level of structural or-
der. This fact has been first pointed out by noting the
common property of many networks to form cliques in
which every element is linked to every other element; i.e.
the presence of a high clustering coefficient [3]. The iden-
tification of hidden ordering and hierarchies in the seem-
ingly haphazard appearance of real networks is therefore
a major area of study, aimed at understanding their basic
organizing principles. This activity has led to a harvest of
results concerning nontrivial correlation properties among
the various elements of natural networks, suggesting the
presence of interesting modular organizations [5–8].

In this paper we point out that the usual clustering
coefficient is in some cases unable to quantify the order
underlying a network’s structure. In particular, a general
ordered network structure is represented by a grid-like
frame, such as a regular hypercubic lattice, that can be
adequately quantified only by evaluating the frequency of
rectangular loops appearing in the network. We introduce
a grid coefficient that allows us to uncover the presence of
a surprising level of grid ordering in several real networks
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ranging from technological (the physical Internet) to social
(scientific collaboration network) systems. By correlating
the presence of grid-like structures with the local connec-
tivity properties we are able to uncover the presence of a
hierarchy that appears to be a widely present organizing
principle [6,8]. In some cases, the scaling behavior of the
grid clustering is very similar to that of the clustering co-
efficient, suggesting a kind of statistical self-similarity in
the modular construction of the network.

A network or graph [9] is a set of vertices and edges
joining pairs of vertices, representing individuals and the
interactions among them, respectively. Two features play
a special role in the characterization of complex networks.
The first one refers to the small-world concept [3]: i.e. the
small average distance in terms of number of edges be-
tween any two vertices in the system. The second consists
in a very high heterogeneity, usually reflected in a scale-
free degree distribution P (k) ∼ k−γ for the probability
that any given vertex has degree k; i.e. k edges to other
vertices [4]. Both properties appear to be ubiquitous in dy-
namically growing networks [1,2]. Real networks also show
a large degree of local clustering and correlations. A first
quantitative measurements of these properties is provided
by the clustering coefficient [3]. In particular, the cluster-
ing coefficient ci of the vertex i, with degree ki, is defined
as the ratio between the number of edges ei in the sub-
graph identified by its nearest neighbors and its maximum
possible value, ki(ki − 1)/2, corresponding to a complete
sub-graph, i.e. ci = 2ei/ki(ki − 1). The average clustering
coefficient 〈c〉 is defined as the average value of ci over all
the vertices in the graph, 〈c〉 =

∑
i ci/N , where N is the

size of the network. This magnitude quantifies the relative
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Fig. 1. (a) Regular square lattice. Nearest neighbors of a ver-
tex (empty circles) are not neighbors of each other. Therefore
the clustering coefficient ci ≡ 0 for every vertex i. (b) Triangu-
lar lattice. Here some of the neighbors are connected to each
other. In particular 2 out of every 5 possible edges are drawn;
hence ci = 2/5 for all the vertices.

abundance with which two vertices connected to the same
vertex are also connected to each other. By comparison,
random graphs [10] are not clustered, having 〈c〉 = 〈k〉/N ,
where 〈k〉 is the average degree, while triangular lattices
tend to be highly clustered with their neighbors.

Further information can be extracted if one computes
the average clustering coefficient c(k) as a function of the
vertex degree k [6]. In the physics terminology, the study
of the clustering coefficient c(k) is strictly related to the
analysis of three-point correlation functions [11]. The ab-
solute average value – as well as the scaling with k – of
this quantity are fundamental to discriminate the level of
randomness and the organizing principles related to the
basic hierarchies present in the networks. For instance, a
large class of scale-free networks shows a clustering coef-
ficient decaying as a power-law as a function of the ver-
tex’s degree [8]. This implies that low degree vertices tend
to form connected cliques with other vertices, while large
connected vertices (hubs) tend to act as bridges between
unconnected cliques, thus showing a small clustering co-
efficient. This fact highlights the existence of some modu-
lar building, identified by the cliques of small degree ver-
tices [8].

With the aim of unveiling the hidden ordering in com-
plex networks, the use of the two- and three-point corre-
lations is however not always sufficient. As a very simple
example we can consider a rectangular lattice or grid, Fig-
ure 1a. In this case it is easy to recognize that the clus-
tering coefficient is not able to distinguish any architec-
ture in a grid-like structure, since its value is always null.
However, it is a good measure of order for other regular
structures, such as a triangular lattice, Figure 1b. Since
grid-like structures are quite frequently observed patterns
in natural systems, we introduce as a further quantitative
characterization of networks’ regularity some metrics that
naturally account for rectangular symmetries [12–15].

We start by considering the closed paths in a network
in which all edges and vertices are distinct. These closed
paths are known as cycles [9]. Cycles of length 3 (i.e. com-
posed of three vertices) are called triangles. The ratio be-
tween the number of triangles that include the vertex i,
ei, and its maximum possible number, ki(ki − 1)/2, de-
fines the triangle coefficient of the vertex i, which is by

Fig. 2. (a) Example of a primary quadrilateral, in which the
three external vertices are nearest neighbors of the vertex i.
(b) Example of a secondary quadrilateral in which one of the
external vertices (empty square) is a second neighbor of the
vertex i .

definition equal to its clustering coefficient ci. Cycles of
length 4 are called quadrilaterals. In the spirit of the clus-
tering coefficient, we want to improve the measurement
of the network structure by using the grid coefficient, c4,i,
that is defined as the fraction of all the quadrilaterals pass-
ing by the vertex i, Qi, divided by the maximum possible
number of quadrilaterals sharing the vertex i, Zi. Analo-
gously, one could consider cycles of of length n, and define
the corresponding coefficient cn,i as the fraction of of all
the cycles of length n that pass through the vertex i, di-
vided by the maximum number of those cycles that could
pass by i. The computational effort to calculate cn,i grows
quite fast with n. Therefore in the present work we will
focus in the simplest nontrivial case n = 4.

The grid coefficient defined for cycles of length 4 can
be further decomposed by noting that each quadrilateral
passing by i is composed of the vertex i itself plus three
external vertices. Quadrilaterals can be therefore classi-
fied according to the nature of the external vertices, see
Figure 2. If all the external vertices are nearest neighbors
of i, they form a primary quadrilateral ; on the other hand,
if one of the external vertices is a second neighbor of i, the
cycle they form is a secondary quadrilateral. If the vertex i
has degree ki and it is connected to ki,2nd second neigh-
bors, it is easy to check that the maximum number of pri-
mary quadrilaterals is Zp

i = 3×(
ki

3

)
= ki(ki−1)(ki−2)/2,

while the maximum number of secondary quadrilaterals is
Zs

i = ki,2ndki(ki − 1)/2. In this way, in order to study
the grid properties of a network, we can define three mag-
nitudes: the primary grid coefficient, cp

4,i = Qp
i /Z

p
i , the

secondary grid coefficient cs
4,i = Qs

i/Z
s
i , and the total grid

coefficient c4,i = (Qp
i + Qs

i )/(Zp
i + Zs

i ), where Qp
i and Qs

i
are the actual number of primary and secondary quadri-
laterals passing by the node i, respectively. The respective
average grid coefficients are defined by averaging these
quantities over all vertices in the network and define the
global relative abundance of quadrilaterals in the network.

As an example of this definition, let us consider the
rectangular lattice represented in Figure 1a, in which each
vertex i has 4 nearest neighbors and 8 second neigh-
bors. There are no primary quadrilaterals passing by any
node i, while the number of secondary quadrilaterals is
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Qs = 4. From here we obtain 〈cp
4〉 = 0, 〈cs

4〉 = 1/9, and
〈c4〉 = 1/15. On the other hand, in the triangular lattice,
Figure 1b, in which each vertex has 6 nearest neighbors
and 12 second neighbors, we find 6 primary quadrilaterals
and 6 secondary quadrilaterals, which yield 〈cp

4〉 = 1/10,
〈cs

4〉 = 1/30, and 〈c4〉 = 1/20. Thus, regular grids exhibit
a finite grid coefficient, in opposition to the clustering co-
efficient, which is zero for any hypercubic lattice.

A very different case is represented by a random net-
work with fixed degree distribution, an example of which
is given by the configuration model [15,16]. For a ran-
dom network, the probability that a randomly chosen edge
points to a vertex of degree k is q(k) = kP (k)/〈k〉. On the
other hand, the probability that two vertices of degrees ki

and kj are connected is π(ki, kj) = kikj/〈k〉N . For any
vertex i, we need at least three nearest neighbors to con-
struct a primary quadrilateral. Given this configuration,
the probability to close the cycle in any of the three pos-
sible quadrilaterals is given by the probability to draw
two edges between two of the three nearest neighbors.
Therefore, we have a primary grid coefficient 〈cp

4〉RG =∑
ki,kj ,kl

q(ki)π(ki − 1, kj − 1)q(kj)π(kj − 2, kl − 1)q(kl) =
(〈k2〉 − 〈k〉)2(〈k3〉 − 3〈k2〉 + 2〈k〉)/(〈k〉5N2). This implies
that a random graph with finite 〈k2〉 and 〈k3〉, has an
average primary grid coefficient 〈cp

4〉RG ∼ N−2. The cal-
culation for the secondary grid coefficient is slightly more
involved. In this case, for any vertex i, we need at least two
nearest neighbors and a second neighbor. This last vertex,
being a second neighbor, is connected to at least one near-
est neighbor, but not necessarily to any of the two nearest
neighbors that will compose the quadrilateral. If the sec-
ond neighbor is not a priori connected to the two nearest
neighbors, then the probability of finding a quadrilateral is
of order N−2. On the other hand, if it is a priori connected
to one of the selected nearest neighbors, the probability
of closing a quadrilateral is given by

∑
kjkl

q(kj)π(kj −
1, kl − 1)q(kl) = (〈k2〉− 〈k〉)2/(〈k〉3N) ≡ 〈c〉RG, which co-
incides with the general expression for the clustering coef-
ficient [15]. This last instance (that the second neighbors
is a priori connected to one of the nearest neighbors con-
sidered) happens with probability 1/ki, where ki is the de-
gree of the vertex i. Therefore, at leading order in N−1, we
have that the average secondary grid coefficient in a ran-
dom graph is given by 〈cs

4〉RG = 〈c〉RG

∑
k≥2 P (k)/k. For

a random graph with a bounded degree distribution with
finite moments, we have that the grid coefficient scales
as 〈c4〉RG ∼ N−1 with the number of vertices N . For a
scale-free random graph, on the other hand, the degree
moments can be large, and yield therefore non-vanishing
grid coefficients even for large N . It is also worth noticing
that in the case of γ < 7/3 the configuration model gives
unphysical results due to the presence of double edges and
loops [17].

In order to characterize the level of grid-like ordering
in real networks, we have measured the grid coefficients in
four different systems, characterized by a scale-free degree
distribution:

Internet: Internet map at the Autonomous System
(AS) level, as of 22nd November 1999 [5,6,18]. These maps

Table 1. Average degree, primary, secondary, and total grid
coefficients for the different networks considered, compared
with the theoretical values for a random networks with the
same size, average degree and degree distribution (see text).

Internet WWW yeast cond-mat

〈k〉 3.88 6.69 5.40 5.85

〈cp
4〉 0.043 0.14 0.021 0.40

〈cp
4〉RG 5.95 0.021 0.005 5 × 10−6

〈cs
4〉 0.028 0.088 0.008 0.036

〈cs
4〉RG 0.24 0.004 0.007 3 × 10−4

〈c4〉 0.028 0.090 0.010 0.12

are collected and made publicly available by the National
Laboratory for Applied Network Research (NLANR)1.
Each AS refers to one single administrative domain of
the Internet. Different ASs are in most cases connected
through a Border Gateway Protocol (BGP) that identi-
fies any AS through a 16-bit number. The map considered
is composed of 6243 ASs acting as vertices and by 12113
BGP peer connections, acting as edges, yielding an aver-
age degree 〈k〉 = 3.88.

World-Wide-Web: Map of the World-Wide-Web col-
lected at the domain of Notre Dame University2 [19–21].
This network is actually directed, but we have considered
it as non-directed. The map is composed of 325729 web
pages, represented by vertices, and 1090108 hyperlinks
pointing from one page to another, represented by edges,
which corresponds to an average degree 〈k〉 = 6.69.

Yeast protein map: Protein interaction map of the
yeast Saccharomyces Cerevisiae3 [22,23]. This network is
composed of 2874 proteins, that constitute the vertices,
and 7753 protein-protein interactions, identified by two
amino-acid chains binding to each other, that constitute
the edges, for an average degree 〈k〉 = 5.40.

Scientific collaborations: Network of scientific collabo-
rations collected from the condensed matter preprint da-
tabase at Los Alamos4 [24,25]. The graph is composed of
16264 different authors, that are connected by one edge if
they have coauthored a joint paper. The total amount of
collaborations (edges) is then 47594, yielding an average
degree 〈k〉 = 5.85.

In Table 1 we report the different average grid coeffi-
cients for all the networks analyzed, compared with those
corresponding to a random graph with the same size and
degree distribution. It is interesting to note that, with the
exception of the Internet, in which the random graph con-
figuration model gives unphysical results [17], the average
grid coefficients in most networks are one to four orders

1 The NLANR is sponsored by the National Science Foun-
dation (see http://moat.nlanr.net/).

2 Data publicly available at
http://www.nd.edu/∼networks.

3 Data available at the DIPTM database
http://dip.doe-mbi.ucla.edu

4 Database located at
http://xxx.lanl.gov/archive/cond-mat
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Fig. 3. Clustering coefficient c(k) (hollow symbols) and grid
coefficient c4(k) (filled symbols) as a function of the degree, for
the networks considered. (a) Internet at the AS level. (b) Map
of the World-Wide-Web domain collected at www.nd.edu.
(c) Network of protein interactions in the yeast Saccharomyces
Cerevisiae. (d) Scientific collaborations from the cond-mat
preprint database.

of magnitude larger than the corresponding coefficients
of a random graph. While the small-world property and
the scale-free degree distribution common to all these net-
works are generally associated to disorder and large fluc-
tuations, the presence of large grid coefficient makes those
graphs reminiscent of a grid-like ordering.

More information can be gathered by studying the grid
coefficient as a function of the vertex’s degree k (i.e. by
considering the average value c4(k) of the total grid co-
efficient for all the vertices with the same degree k). As
similarly noticed for the clustering coefficient [6,8], the
grid coefficient is well approximated in most cases by a
power-law decay for increasing k. This feature indicates
a correlation between the vertices’ degree and the local
network structure. In particular, low degree vertices are
arranged in fairly ordered patterns whose building blocks
are triangular and rectangular structures. Vertices with
large degree act as the network backbone by connecting
the highly clustered regions. Since we are facing power-
law behavior for the clustering and grid coefficients, we
have that no characteristic length scales are present in
the system and thus there is a hierarchy of modular struc-
tures incorporating loops of all lengths, appearing at dif-
ferent length scales. Even though statistical fluctuations
are comparable, in some cases the grid coefficient appears
to be less susceptible to noise than other metrics. Finally,
we note the apparent presence of two classes of networks:
the first with a scaling of the c4(k) very similar to c(k)
(corresponding to the Internet and the WWW), and a
second one with c4(k) different from c(k) (the protein and
scientific collaboration maps). This observation can be in-
terpreted as follows: When the power-law behavior is alike,
we can talk of self-similar networks in which both rectan-
gular and triangular patterns are equally implemented in

the modular construction of the network. In the second
situation, one of the two patterns is abandoned earlier in
the hierarchical construction of the graph, breaking the
self-similarity of the hierarchy.
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